Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.039
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 297, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607564

RESUMO

Glycosidic osmolytes are widespread natural compounds that protect microorganisms and their macromolecules from the deleterious effects of various environmental stresses. Their protective properties have attracted considerable interest for industrial applications, especially as active ingredients in cosmetics and healthcare products. In that regard, the osmolyte glucosylglycerate is somewhat overlooked. Glucosylglycerate is typically accumulated by certain organisms when they are exposed to high salinity and nitrogen starvation, and its potent stabilizing effects have been demonstrated in vitro. However, the applications of this osmolyte have not been thoroughly explored due to the lack of a cost-efficient production process. Here, we present an overview of the progress that has been made in developing promising strategies for the synthesis of glucosylglycerate and its precursor glycerate, and discuss the remaining challenges. KEY POINTS: • Bacterial milking could be explored for fermentative production of glucosylglycerate • Glycoside phosphorylases of GH13_18 represent attractive alternatives for biocatalytic production • Conversion of glycerol with alditol oxidase is a promising strategy for generating the precursor glycerate.


Assuntos
Glicosídeos , Compostos Orgânicos , Biocatálise , Fermentação , Glicerol
2.
Nat Commun ; 15(1): 3308, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632275

RESUMO

Continuous-flow biocatalysis utilizing immobilized enzymes emerged as a sustainable route for chemical synthesis. However, inadequate biocatalytic efficiency from current flow reactors, caused by non-productive enzyme immobilization or enzyme-carrier mismatches in size, hampers its widespread application. Here, we demonstrate a general-applicable and robust approach for the fabrication of a high-performance enzymatic continuous-flow reactor via integrating well-designed scalable isoporous block copolymer (BCP) membranes as carriers with an oriented and productive immobilization employing material binding peptides (MBP). Densely packed uniform enzyme-matched nanochannels of well-designed BCP membranes endow the desired nanoconfined environments towards a productive immobilized phytase. Tuning nanochannel properties can further regulate the complex reaction process and fortify the catalytic performance. The synergistic design of enzyme-matched carriers and efficient enzyme immobilization empowers an excellent catalytic performance with >1 month operational stability, superior productivity, and a high space-time yield (1.05 × 105 g L-1 d-1) via a single-pass continuous-flow process. The obtained performance makes the designed nano- and isoporous block copolymer membrane reactor highly attractive for industrial applications.


Assuntos
Reatores Biológicos , Enzimas Imobilizadas , Enzimas Imobilizadas/química , Biocatálise , Catálise , Polímeros/química
3.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38619457

RESUMO

In our recent publication, we have proposed a revised base excision repair pathway in which DNA polymerase ß (Polß) catalyzes Schiff base formation prior to the gap-filling DNA synthesis followed by ß-elimination. In addition, the polymerase activity of Polß employs the "three-metal ion mechanism" instead of the long-standing "two-metal ion mechanism" to catalyze phosphodiester bond formation based on the fact derived from time-resolved x-ray crystallography that a third Mg2+ was captured in the polymerase active site after the chemical reaction was initiated. In this study, we develop the models of the uncross-linked and cross-linked Polß complexes and investigate the "three-metal ion mechanism" vs the "two-metal ion mechanism" by using the quantum mechanics/molecular mechanics molecular dynamics simulations. Our results suggest that the presence of the third Mg2+ ion stabilizes the reaction-state structures, strengthens correct nucleotide binding, and accelerates phosphodiester bond formation. The improved understanding of Polß's catalytic mechanism provides valuable insights into DNA replication and damage repair.


Assuntos
DNA Polimerase beta , Catálise , Replicação do DNA , Magnésio , Simulação de Dinâmica Molecular , Biocatálise
4.
Molecules ; 29(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542964

RESUMO

(R)-Homobenzylic amines are key structural motifs present in (R)-selegiline, a drug indicated for the treatment of early-stage Parkinson's disease. Herein, we report a new short chemoenzymatic approach (in 2 steps) towards the synthesis of (R)-selegiline via stereoselective biocatalytic reductive amination as the key step. The imine reductase IR36-M5 mutant showed high conversion (97%) and stereoselectivity (97%) toward the phenylacetone and propargyl amine substrates, offering valuable biocatalysts for synthesizing alkylated homobenzylic amines.


Assuntos
Oxirredutases , Selegilina , Oxirredutases/metabolismo , Iminas , Estereoisomerismo , Aminas/química , Aminação , Biocatálise
5.
J Am Chem Soc ; 146(12): 7876-7884, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489244

RESUMO

Biocatalysis is becoming an indispensable tool in organic synthesis due to high enzymatic catalytic efficiency as well as exquisite chemo- and stereoselectivity. Some biocatalysts display great promiscuity including a broad substrate scope as well as the ability to catalyze more than one type of transformation. These promiscuous activities have been applied individually to efficiently access numerous valuable target molecules. However, systems in which enzymes possessing multiple different catalytic activities are applied in the synthesis are less well developed. Such multifunctional biocatalysts (MFBs) would simplify chemical synthesis by reducing the number of operational steps and enzyme count, as well as simplifying the sequence space that needs to be engineered to develop an efficient biocatalyst. In this Perspective, we highlight recently reported MFBs focusing on their synthetic utility and mechanism. We also offer insight into their origin as well as comment on potential strategies for their discovery and engineering.


Assuntos
Biocatálise , Catálise , Técnicas de Química Sintética
6.
Biotechnol Adv ; 72: 108347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527656

RESUMO

Mitigating greenhouse gas emissions is a critical challenge for promoting global sustainability. The utilization of CO2 and CH4 as substrates for the production of valuable products offers a promising avenue for establishing an eco-friendly economy. Biocatalysis, a sustainable process utilizing enzymes to facilitate biochemical reactions, plays a significant role in upcycling greenhouse gases. This review provides a comprehensive overview of the enzymes and associated reactions involved in the biocatalytic conversion of CO2 and CH4. Furthermore, the challenges facing the field are discussed, paving the way for future research directions focused on developing robust enzymes and systems for the efficient fixation of CO2 and CH4.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Dióxido de Carbono/metabolismo , Biocatálise , Gases de Efeito Estufa/análise , Metano/metabolismo
7.
Int J Biol Macromol ; 265(Pt 2): 130819, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508550

RESUMO

Norepinephrine, a kind of ß-adrenergic receptor agonist, is commonly used for treating shocks and hypotension caused by a variety of symptoms. The development of a straightforward, efficient and environmentally friendly biocatalytic route for manufacturing norepinephrine remains a challenge. Here, we designed and realized an artificial biocatalytic cascade to access norepinephrine starting from 3, 4-dihydroxybenzaldehyde and L-threonine mediated by a tailored-made L-threonine transaldolase PsLTTA-Mu1 and a newly screened tyrosine decarboxylase ErTDC. To overcome the imbalance of multi-enzymes in a single cell, engineering of PsLTTA for improved activity and fine-tuning expression mode of multi-enzymes in single E.coli cells were combined, leading to a robust whole cell biocatalyst ES07 that could produce 100 mM norepinephrine with 99% conversion, delivering a highest time-space yield (3.38 g/L/h) ever reported. To summarized, the current study proposed an effective biocatalytic approach for the synthesis of norepinephrine from low-cost substrates, paving the way for industrial applications of enzymatic norepinephrine production.


Assuntos
Treonina , Transaldolase , Transaldolase/metabolismo , Norepinefrina/metabolismo , Biocatálise , Escherichia coli/metabolismo
8.
Biotechnol Adv ; 72: 108338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38460741

RESUMO

Non-homogeneous enzyme-catalyzed systems are more widely used than homogeneous systems. Distinguished from the conventional biphasic approach, Pickering emulsion stabilized by ultrafine solid particles opens up an innovative platform for biocatalysis. Their vast specific surface area significantly enhances enzyme-substrate interactions, dramatically increasing catalytic efficiency. This review comprehensively explores various aspects of Pickering emulsion biocatalysis, provides insights into the multiple types and mechanisms of its catalysis, and offers strategies for material design, enzyme immobilization, emulsion formation control, and reactor design. Characterization methods are summarized for the determination of drop size, emulsion type, interface morphology, and emulsion potential. Furthermore, recent reports on the design of stimuli-responsive reaction systems are reviewed, enabling the simple control of demulsification. Moreover, the review explores applications of Pickering emulsion in single-step, cascade, and continuous flow reactions and outlines the challenges and future directions for the field. Overall, we provide a review focusing on Pickering emulsions catalysis, which can draw the attention of researchers in the field of catalytic system design, further empowering next-generation bioprocessing.


Assuntos
Enzimas Imobilizadas , Biocatálise , Emulsões/química , Catálise , Enzimas Imobilizadas/química
9.
Langmuir ; 40(13): 6685-6693, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38525517

RESUMO

Understanding the mechanism of interfacial enzyme kinetics is critical to the development of synthetic biological systems for the production of value-added chemicals. Here, the interfacial kinetics of the catalysis of ß-nicotinamide adenine dinucleotide (NAD+)-dependent enzymes acting on NAD+ tethered to the surface of silica nanoparticles (SiNPs) has been investigated using two complementary and supporting kinetic approaches: enzyme excess and reactant (NAD+) excess. Kinetic models developed for these two approaches characterize several critical reaction steps including reversible enzyme adsorption, complexation, decomplexation, and catalysis of the surface-bound enzyme/NAD+ complex. The analysis reveals a concentrating effect resulting in a very high local concentration of enzyme and cofactor on the particle surface, in which the enzyme is saturated by surface-bound NAD, facilitating a rate enhancement of enzyme/NAD+ complexation and catalysis. This resulted in high enzyme efficiency within the tethered NAD+ system compared to that of the free enzyme/NAD+ system, which increases with decreasing enzyme concentration. The role of enzyme adsorption onto solid substrates with a tethered catalyst (such as NAD+) has potential for creating highly efficient flow biocatalytic systems.


Assuntos
NAD , NAD/química , Biocatálise , Catálise , Cinética , Adsorção
10.
Chimia (Aarau) ; 78(3): 108-117, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38547011

RESUMO

Excelzyme, an enzyme engineering platform located at the Zurich University of Applied Sciences, is dedicated to accelerating the development of tailored biocatalysts for large-scale industrial applications. Leveraging automation and advanced computational techniques, including machine learning, efficient biocatalysts can be generated in short timeframes. Toward this goal, Excelzyme systematically selects suitable protein scaffolds as the foundation for constructing complex enzyme libraries, thereby enhancing sequence and structural biocatalyst diversity. Here, we describe applied workflows and technologies as well as an industrial case study that exemplifies the successful application of the workflow.


Assuntos
Engenharia de Proteínas , Proteínas , Humanos , Suíça , Universidades , Biocatálise , Proteínas/química , Engenharia de Proteínas/métodos
11.
Mol Biol Rep ; 51(1): 410, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466518

RESUMO

Searching for new and better biocatalysts is an area of study in constant development. In nature, mechanisms generally occurring in evolution, such as genetic duplication, recombination, and natural selection processes, produce various enzymes with different architectures and properties. The recombination of genes that code proteins produces multidomain chimeric enzymes that contain two or more domains that sometimes enhance their catalytic properties. Protein engineering has mimicked this process to enhance catalytic activity and the global stability of enzymes, searching for new and better biocatalysts. Here, we present and discuss examples from both natural and synthetic multidomain chimeric enzymes and how additional domains heighten their stability and catalytic activity. Moreover, we also describe progress in developing new biocatalysts using synthetic fusion enzymes and revise some methodological strategies to improve their biological fitness.


Assuntos
Duplicação Gênica , Engenharia de Proteínas , Catálise , Proteínas Recombinantes de Fusão/genética , Enzimas , Biocatálise
12.
Biotechnol J ; 19(3): e2300615, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472086

RESUMO

Phytosterols usually have to be esterified to various phytosterol esters to avoid their disadvantages of unsatisfactory solubility and low bioavailability. The enzymatic synthesis of phytosterol esters in a solvent-free system has advantages in terms of environmental friendliness, sustainability, and selectivity. However, the limitation of the low stability and recyclability of the lipase in the solvent-free system, which often requires a relatively high temperature to induce the viscosity, also increased the industrial production cost. In this context, a low-cost material, namely diatomite, was employed as the support in the immobilization of Candida rugosa lipase (CRL) due to its multiple modification sites. The Fe3 O4 was also then introduced to this system for quick and simple separation via the magnetic field. Moreover, to further enhance the immobilization efficiency of diatomite, a modification strategy which involved the octadecyl and sulfonyl group for regulating the hydrophobicity and interaction between the support and lipase was successfully developed. The optimization of the ratio of the modifiers suggested that the -SO3 H/C18 (1:1.5) performed best with an enzyme loading and enzyme activity of 84.8 mg·g-1 and 54 U·g-1 , respectively. Compared with free CRL, the thermal and storage stability of CRL@OSMD was significantly improved, which lays the foundation for the catalytic synthesis of phytosterol esters in solvent-free systems. Fortunately, a yield of 95.0% was achieved after optimizing the reaction conditions, and a yield of 70.0% can still be maintained after six cycles.


Assuntos
Terra de Diatomáceas , Enzimas Imobilizadas , Fitosteróis , Enzimas Imobilizadas/metabolismo , Esterificação , Lipase/metabolismo , Biocatálise , Solventes , Fitosteróis/metabolismo , Esteróis , Estabilidade Enzimática , Ésteres
13.
Nat Commun ; 15(1): 2239, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472201

RESUMO

The precise design of single-atom nanozymes (SAzymes) and understanding of their biocatalytic mechanisms hold great promise for developing ideal bio-enzyme substitutes. While considerable efforts have been directed towards mimicking partial bio-inspired structures, the integration of heterogeneous SAzymes configurations and homogeneous enzyme-like mechanism remains an enormous challenge. Here, we show a spatial engineering strategy to fabricate dual-sites SAzymes with atomic Fe active center and adjacent Cu sites. Compared to planar Fe-Cu dual-atomic sites, vertically stacked Fe-Cu geometry in FePc@2D-Cu-N-C possesses highly optimized scaffolds, favorable substrate affinity, and fast electron transfer. These characteristics of FePc@2D-Cu-N-C SAzyme induces biomimetic O2 activation through homogenous enzymatic pathway, resembling functional and mechanistic similarity to natural cytochrome c oxidase. Furthermore, it presents an appealing alternative of cytochrome P450 3A4 for drug metabolism and drug-drug interaction. These findings are expected to deepen the fundamental understanding of atomic-level design in next-generation bio-inspired nanozymes.


Assuntos
Biomimética , Complexo IV da Cadeia de Transporte de Elétrons , Biocatálise , Transporte de Elétrons , Engenharia , Catálise
14.
Chirality ; 36(4): e23660, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511944

RESUMO

A green and efficient process for the synthesis of cenobamate has been accomplished in 70% yield and >99% ee through the bio-reduction of ß-ketotetrazole using Daucus carota whole plant cells. The corresponding ß-hydroxytetrazole was isolated in 60% yield and >98% ee. This is the first report on the biocatalytic reduction of ß-ketotetrazole using plant enzymes derived from D. carota root cells with excellent enantioselectivity.


Assuntos
Anticonvulsivantes , Carbamatos , Clorofenóis , Cetonas , Tetrazóis , Estereoisomerismo , Biocatálise
15.
Nat Commun ; 15(1): 2299, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485940

RESUMO

Designing complex synthetic materials for enzyme immobilization could unlock the utility of biocatalysis in extreme environments. Inspired by biology, we investigate the use of random copolymer brushes as dynamic immobilization supports that enable supra-biological catalytic performance of immobilized enzymes. This is demonstrated by immobilizing Bacillus subtilis Lipase A on brushes doped with aromatic moieties, which can interact with the lipase through multiple non-covalent interactions. Incorporation of aromatic groups leads to a 50 °C increase in the optimal temperature of lipase, as well as a 50-fold enhancement in enzyme activity. Single-molecule FRET studies reveal that these supports act as biomimetic chaperones by promoting enzyme refolding and stabilizing the enzyme's folded and catalytically active state. This effect is diminished when aromatic residues are mutated out, suggesting the importance of π-stacking and π-cation interactions for stabilization. Our results underscore how unexplored enzyme-support interactions may enable uncharted opportunities for using enzymes in industrial biotransformations.


Assuntos
Bacillus subtilis , Enzimas Imobilizadas , Enzimas Imobilizadas/química , Estabilidade Enzimática , Bacillus subtilis/metabolismo , Lipase/metabolismo , Temperatura , Biocatálise , Chaperonas Moleculares/metabolismo
16.
J Am Chem Soc ; 146(10): 6806-6816, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38422481

RESUMO

The photochemical deprotection of structurally engineered o-nitrobenzylphosphate-caged hairpin nucleic acids is introduced as a versatile method to evolve constitutional dynamic networks, CDNs. The photogenerated CDNs, in the presence of fuel strands, interact with auxiliary CDNs, resulting in their dynamically equilibrated reconfiguration. By modification of the constituents associated with the auxiliary CDNs with glucose oxidase (GOx)/horseradish peroxidase (HRP) or the lactate dehydrogenase (LDH)/nicotinamide adenine dinucleotide (NAD+) cofactor, the photogenerated CDN drives the orthogonal operation upregulated/downregulated operation of the GOx/HRP and LDH/NAD+ biocatalytic cascade in the conjugate mixture of auxiliary CDNs. Also, the photogenerated CDN was applied to control the reconfiguration of coupled CDNs, leading to upregulated/downregulated formation of the antithrombin aptamer units, resulting in the dictated inhibition of thrombin activity (fibrinogen coagulation). Moreover, a reaction module consisting of GOx/HRP-modified o-nitrobenzyl phosphate-caged DNA hairpins, photoresponsive caged auxiliary duplexes, and nickase leads upon irradiation to the emergence of a transient, dissipative CDN activating in the presence of two alternate auxiliary triggers, achieving transient operation of up- and downregulated GOx/HRP biocatalytic cascades.


Assuntos
DNA Catalítico , DNA Catalítico/metabolismo , NAD , DNA/genética , Biocatálise , Oligonucleotídeos
17.
Int J Biol Macromol ; 263(Pt 2): 130381, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395291

RESUMO

Enzyme immobilization usually make use of nanomaterials to hold up biocatalysis stability in various unamiable reaction conditions, but also lead large discount on enzyme activity. Thus, there are abundant researches focus on how to deal with the relation of enzyme molecules and supports. In this work, a new state of highly active enzymes has been established through facile and novel in situ immobilization and soft template removal method to construct enzyme contained hollow silica nanosphere (catalase@HSN) biocatalysts where enzymes in the cavity exhibit "immobilized but not rigid state". The obtained catalase@HSN was characterized by transmission electron microscopy, scanning electron microscopy and confocal laser scanning microscopy et al. Catalase@HSN exhibits excellent activity (about 80 % activity recovery rate) and stability suffers from extreme pH, temperature, and organic solvents. Moreover, the reusability and storage stability of catalase@HSN also are satisfactory. This proposed strategy provides a facile method for preparing biocatalysts under mild conditions, facilitating the applications of immobilized enzyme in the fields of real biocatalytic industry with high apparent activity and passable stability.


Assuntos
Nanosferas , Dióxido de Silício , Catalase/metabolismo , Dióxido de Silício/química , Nanosferas/química , Enzimas Imobilizadas/química , Biocatálise , Estabilidade Enzimática
18.
Chem Commun (Camb) ; 60(20): 2716-2731, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38353179

RESUMO

Real-time monitoring of biocatalytic-based processes is significantly improved and simplified when they can be visualized. Visual monitoring can be achieved by integrating a fluorescent unit with the biocatalyst. Herein, we outline the design strategies of fluorescent probes for monitoring biocatalysis: (1) probes for monitoring biocatalytic transfer: γ-glutamine is linked to the fluorophore as both a recognition group and for intramolecular charge transfer (ICT) inhibition; the probe is initially in an off state and is activated via the transfer of the γ-glutamine group and the release of the free amino group, which results in restoration of the "Donor-π-Acceptor" (D-π-A) system and fluorescence recovery. (2) Probes for monitoring biocatalytic oxidation: a propylamine is connected to the fluorophore as a recognition group, which cages the hydroxyl group, leading to the inhibition of ICT; propylamine is oxidized and subsequently ß-elimination occurs, resulting in exposure of the hydroxyl group and fluorescence recovery. (3) Probes for monitoring biocatalytic reduction: a nitro group attached to a fluorophore as a fluorescence quenching group, this is converted to an amino group by catalytic reduction, resulting in fluorescence recovery. (4) Probes for monitoring biocatalytic hydrolysis: ß-D-galactopyranoside or phosphate acts as a recognition group attached to hydroxyl groups of the fluorophore; the subsequent biocatalytic hydrolysis reaction releases the hydroxyl group resulting in fluorescence recovery. Following these 4 mechanisms, fluorophores including cyanine, coumarin, rhodamine, and Nile-red, have been used to develop systems for monitoring biocatalytic reactions. We anticipate that these strategies will result in systems able to rapidly diagnose and facilitate the treatment of serious diseases.


Assuntos
Corantes Fluorescentes , Glutamina , Biocatálise , Rodaminas , Propilaminas
19.
Chem Soc Rev ; 53(6): 2828-2850, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38407834

RESUMO

Biocatalysis has become an important tool in chemical synthesis, allowing access to complex molecules with high levels of activity and selectivity and with low environmental impact. Key discoveries in protein engineering, bioinformatics, recombinant technology and DNA sequencing have contributed towards the rapid acceleration of the field. This tutorial review explores enzyme engineering strategies and high-throughput screening approaches that have been applied for the discovery and development of enzymes for synthetic application. Landmark developments in the field are discussed and have been carefully selected to highlight the diverse synthetic applications of enzymes within the pharmaceutical, agricultural, food and chemical industries. The design and development of artificial biocatalytic cascades is also examined. This tutorial review will give readers an insight into the landmark discoveries and milestones that have helped shape and grow this branch of catalysis since the discovery of the first enzyme.


Assuntos
Engenharia de Proteínas , Biocatálise , Catálise
20.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396648

RESUMO

The employment of 2-deoxyribose-5-phosphate aldolase (DERA) stands as a prevalent biocatalytic route for synthesizing statin side chains. The main problem with this pathway is the low stability of the enzyme. In this study, mesocellular silica foam (MCF) with different pore sizes was used as a carrier for the covalent immobilization of DERA. Different functionalizing and activating agents were tested and kinetic modeling was subsequently performed. The use of succinic anhydride as an activating agent resulted in an enzyme hyperactivation of approx. 140%, and the stability almost doubled compared to that of the free enzyme. It was also shown that the pore size of MCF has a decisive influence on the stability of the DERA enzyme.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Dióxido de Silício/química , Aldeído Liases/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Biocatálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...